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Abstract:The paper provides complete results of the feedback control design problem for a wide class of discrete-
time systems possessing fast and slow modes. The mode-separation is expressed in terms of an inequality relating
norms of system sub-matrices. The slow and fast subsystems are considered to be completely controllable and
observable. A systematic two-stage procedure is developed which enables designing separate gain matrices for
the fast and slow subsystems based onH∞ andH2 optimization criteria and using linear matrix inequalities. It
is established that the composite control yields first-order approximations to the behavior of the discrete system.
The theoretical analysis is extended to designing of Kalman filters and linear quadratic Gaussian controllers. It is
shown that the design procedure eventually reduces to solving pure-slow and pure-fast reduced-order Kalman filters
followed by pure-slow and pure-fast reduced-order discrete-time algebraic Riccati equations. Typical applications
are considered to illustrate the design procedure.

Key–Words: Time-scale modeling; Composite control; Linear quadratic Gaussian; Kalman filter; Slow subsystem;
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1 Introduction

The usefulness of time-scale modeling approach for
the control analysis and design of dynamical systems
with fast and slow modes has been widely recognized
as a powerful tool for over three decades [1, 2]. In
addition,H∞-control [3] has been an active topic of
research for almost three decades and has received
the attention of researchers in the theory of dynami-
cal systems with time-scales [4, 5, 11]. A salient fea-
ture of the available results is that the control anal-
ysis and design are implemented in two stages, such
that an appropriate reduced-order model is handled at
each stage. Extension of the time-scale approach to
the analysis and control design of discrete systems has
been developed [7] using explicitly invertible linear
transformations and a quasi-steady-state assumption
[6]. It has been shown that, when an inequality relat-
ing the norms of subsystem matrices is satisfied, the
discrete model can be approximated by (a) a slow sub-
model with large eigenvalues distributed near the unit
circle and (b) a fast submodel with small eigenvalues
centered around the origin in the complex plane. This
allows feedback control to be implemented using sep-
arate gain matrices.

In this paper, we build on the theory in [7, 6] and
extend it further to provide a state-space solution for

H∞ andH2 composite state-feedback controls of a
two-time-scale discrete system. The results are ex-
pressed in terms of two independent linear matrix in-
equalities (LMIs). It is shown that the new feedback
design yields first-order perturbation in the behavior
of the discrete system. Moreover, we show that the
results of [6]–[14] can be extended to Kalman filter-
ing using slow-fast separation. These results are used
to build up reduced-order slow and fast Kalman filters
as well Kalman full-order filters and to establish the
conditions under which reduced-order filters could be
designed. After that, we compare the results of the
approximated filtered system with the actual filtered
system.

The contributions of this paper are

1. it complements the results obtained in [6]–[14]
on structural properties of discrete systems with
fast-slow separation;

2. it establishes the conditions under which full-
and reduced-order Kalman filters can be de-
signed to reconstruct the fast and slow states; and

3. it provides a two-stage procedure to compute the
gain matrices of based onH∞ andH2 optimiza-
tion criteria.

The developed methods are implemented on typical
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application models to illustrate the theoretical analy-
sis.

Notations:We useW T ,W−1 and||W || to denote
the transpose, the inverse and induced-norm of any
square matrixW , respectively. We useW < 0 to
denote a symmetric negative definite matrixW andI
to denote then × n identity matrix. Matrices, if their
dimensions are not explicitly stated, are assumed to
be compatible for algebraic operations. In symmetric
block matrices or complex matrix expressions, we use
the symbol• to represent a term that is induced by
symmetry. Sometimes, the arguments of a function
will be omitted when no confusion can arise.

2 Discrete Systems with Time-Scales

Consider a class of linear shift-invariant systems de-
scribed by

x(k + 1) = Ax(k) +Bu(k) + Γw(k)

y(k) = Cx(k) + Φw(k) (1)

where the vectorsx(k) ∈ ℜn, u(k) ∈ ℜm, y(k) ∈
ℜq, w(k) ∈ ℜs are the state, control input, output
and disturbance input, respectively. We assume that
system (1) is asymptotically stable, the pair(A, B)
is completely reachable and the pair(A, C) is com-
pletely observable. In the literature, there are two cat-
egories of modeling to exhibit the time-scale phenom-
ena in discrete Systems. One category can be termed
”explicit” since a particular time-scale parameter ap-
pears explicitly in the model [10, 12, 13, 14]. A mem-
ber class of this category is given by

x1(k + 1) = A11x1(k) + ε1−jA12x2(k)

+ B1u(k) + Γ1w(k)

ε2ix2(k + 1) = εiA21x1(k) + εA22x2(k)

+ εiB2u(k) + Γ2w(k) (2)

wherei, j ∈ {0, 1}, x1(k) ∈ ℜn1 , x2(k) ∈ ℜn2 are
the state components,u(k) ∈ ℜm is the control input.
Three limiting cases are of interest:{i = 0, j = 0}
in which thetime-scale parameter is retained in the
column blocks,{i = 0, j = 1} in which the
time-scale parameter is retained in the row blocks and
{i = 1, j = 1} in which the time-scale parameter
is retained in the diagonal blocks. Additional classes
arise as a result of numerical solution or sampling
continuous-time systems with time-scales and using
appropriate block diagonal transformation scheme. In
case of fast sampling ofTf = ε, a class of discrete-
time systems withtwo-time scales is given be:

x1(n+ 1) = [I + εD11]x1(n) + εD12x2(n)

+ εE1u(k) + Γ1w(k)

x2(n+ 1) = D21x1(n) +D22x2(k)

+ E2u(k) + Γ2w(k) (3)

wheren is the fast sampling instant. However, if the
sampling is slowTs = 1, we could have the discrete
systems will be

x1(p+ 1) = D11x1(p) + εE12x2(p)

+ E1u(p) + Γ1w(k)

x2(p+ 1) = D21x1(p) + εE22x2(p)

+ E2u(p) + Γ2w(k) (4)

wherep denotes the slow sampling instant,n = p[1/ε.
It is significant to note that the analysis and design of
systems (2)-(4) requires the identification of the scalar
ε > 0 a priori.

The other modeling category can be called ”im-
plicit” since there is no time-scale parameter in the
model. In this category, to exhibit the behavior of
fast-slow modes of system (1), only suitable arrange-
ment of system matrices is often required, which can
be attained via permutation and scaling of states. This
leads to the model

x1(k + 1) = A1x1(k) +A2x2(k)

+ B1u(k) + Γ1w(k)

x2(k + 1) = A3x1(k) +A4x2(k)

+ B2u(k) + Γ2w(k)

y(k) = C1x1(k) + C2x2(k) + Φw(k) (5)

which possesses the time-scale property1. The output
matrices areC1 ∈ ℜq×n1 , C2 ∈ ℜq×n2 and the dis-
turbance weighting matrices areΓ1 ∈ ℜn1×s, Γ2 ∈
ℜq×s, Φ ∈ ℜq×s. This implies that the eigen-
spectrumλ(A) of system (1) consists of a cluster of
n1 largeeigenvalues, distributed near the unit circle,
separated from a cluster ofn2 small eigenvalues cen-
tered around the origin in the complex plane. The first
n1 eigenvalues designate the slow modes of the sys-
tem (1) because their response is slower than that of
the fast modes represented by the remainingn2 eigen-
values.

3 Discrete Systems with Time-Scales

It can be readily established, following a discrete
quasi-steady-state analysis [7], that system (5) can be

1It has been shown in , see [6, 7] that a sufficient condition
for mode-separation in discrete systems is||A−1

o || << (||A4||+
||(I−A4)

−1A3||||A2||)
−1 whereAo = A1+A2(I−A4)

−1A3

andA1 ∈ ℜn1×n1 , A2 ∈ ℜn1×n2 , A3 ∈ ℜn2×n1 andA4 ∈
ℜn2×n2
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decomposed into a slow subsystem

xs(k + 1) = Aoxs(k) +Bous(k) + Γow(k)

ys(k) = Coxs(k) +Dous(k) + Ψow(k)

Ao = A1 +A2(I −A4)
−1B2,

Bo = A1 +A2(I −A4)
−1A3

Co = C1 + C2(I −A4)
−1A3,

Do = C2(I −A4)
−1B2,

Γo = Γ1 +A2(I −A4)
−1Γ2,

Ψo = C2(I −A4)
−1Γ2 (6)

of ordern1, and a fast subsystem

xf (k + 1) = A4xf (k) +B2uf (k) + Γ2w(k)

yf (k) = C2xf (k) (7)

of ordern2. As shown in [9] the slow controlus(k)
and the fast controluf (k) produce a composite con-
trol uc(k) according touc(k) = us(k) + uf (k).
Suppose that a linear feedback scheme of the type
us(k) = Gsxs(k), uf (k) = Gfxf (k) with indepen-
dent gainsGo, Gf has been designed for slow and
fast subsystems subject to prescribed specifications.
In view of the mode-separation [6], the following re-
sult is established:

Lemma 1 The composite control

uc(k) =

[(I −Gf (I −A4)
−1B2)

−1Go −Gf (I −A4)
−1A3]x1(k)

+Gfx2(k) (8)

yields afirst-order approximation to the state trajec-
tories of system (5).

The objective now is to designH∞ andH2 controllers
to guarantee stabilizing system (5) with prescribed
performance.

4 H∞ Control Design

Instead of designing a full-orderH∞, we decompose
it into two separate slow and fastH∞ controllers and
later on we recompose them in the manner ofLemma
1.

4.1 SlowH∞ controller

Let Vs = xts(k)Psxs(k), Ps > 0 be a Lyapunov
function associated with the slow subsystem (6). The
objective of slowH∞ controller can then be phrased
as: Given a scalarγf > 0, determine the controller
us(k) = Gsxs(k) that stabilizes system (6) and ensur-
ing that ||ys(k)||22 < γ2s ||w(k)||2

2
. The design result

is provided by the following theorem:

Theorem 2 : System (6) is stabilizable by the
controller us(k) = Gsxs(k) and ||ys(k)||

2
2

<
γ2s ||w(k)||2

2
if there exist matricesXs > 0, Ys and a

scalarγs > 0 suchthat the following LMI is feasible








−Xs 0 XsA
t
o + Y t

sB
t
o XsC

t
o + Y t

sD
t
o

• −γ2

sI Γt
o 0

• • −Xs XsΦ
t
o

• • • −I









< 0 (9)

TheH∞ slow gain is given byGs = YsX
−1
s .

Proof: It follows from robust control theory [3] that
the solution of the slowH∞ control problem cor-
responds to determining the controller gainGs that
guarantees the feasibility of

Πs = ∆Vs + yts(k)ys(k) − γ2s wt(k)w(k) < 0 (10)

Evaluation of the first-forward difference∆Vs along
the solutions of (6) withus(k) = Gsxs(k), we ex-
press inequality (10) in the form

Πs =

[

xs
ws

]t

Ξs

[

xs
ws

]

< 0 (11)

Ξs =

[

Ξs1 Ξs2

• −Ξs3

]

Ξs1 = −Ps + (At
o +Gt

sB
t
o)Ps(Ao +BoGs)

+ (Ct
o +Gt

sD
t
o)(Co +DoGs)

Ξs2 = (At
o +Gt

sB
t
o)PsΓo + (Ct

o +Gt
sD

t
o)Φo

Ξs3 = γ2I − Φt
oΦo − Γt

oPsΓo (12)

Inequality (11) impliesthat Ξs < 0. Employing
Schur complements toΞs < 0 andapplying the con-
gruent transformationXs, I, Xs, I with Xs =
P−1
s , GsXs = Ys, we readily obtain inequality (9).

⊓⊔

4.2 FastH∞ controller

Similarly, let Vf = xtf (k)Pfxf (k), Pf > 0 be a
Lyapunov function associated with the fast subsystem
(7). The objective of fastH∞ controller can then be
phrased as:Given a scalarγs > 0, determine the
controller uf (k) = Gfxf (k) that stabilizes system
(7) and ensuring that||yf (k)||22 < γ2f ||w(k)||2

2
. The

corresponding design result is provided by the follow-
ing theorem:

Theorem 3 : System (7) is stabilizable by the
controller uf (k) = Gfxf (k) and ||yf (k)||

2
2

<
γ2f ||w(k)||2

2
if there exist matricesXf > 0, Yf and a
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scalarγf > 0 such that such that the following LMI
is feasible









−Xf 0 XfA
t
4
+ Y t

fB
t
2

XfC
t
2

• −γ2sI Γt
2

0
• • −Xf 0
• • • −I









< 0 (13)

TheH∞ fast gain is given byGf = YfX
−1

f .

Proof: Follows by parallel development toTheorem
2. ⊓⊔

By combiningLemma 1, Theorems2 and 3, the
compositeH∞ control is derived by the following
lemma:

Lemma 4 Consider system (5) and letXs > 0, Ys
andXf > 0, Yf be the feasible solutions of the LMIs
(9) and (13), respectively. Then theH∞ composite
control

uc(k) = [(I − YfX
−1

f (I −A4)
−1B2)

−1YsX
−1

s

− YfX
−1

f (I −A4)
−1A3]x1(k)

+ YfX
−1

f x2(k) (14)

guarantees that||y(k)||2
2
< γ2 ||w(k)||2

2
with γ ∈

[γs, γf ]. Moreover, it yields a first-order approxima-
tion to the state trajectories of the original system (5).

In case that the fast subsystem is asymptotically sta-
ble, a reduced-orderH∞ control can be derived in the
following lemma:

Lemma 5 Consider system (5) and letXs > 0, Ys
be the feasiblesolution of the LMI (9). Then theH∞

reduced-order control

uc(k) = YsX
−1

s x1(k) (15)

guarantees that||y(k)||2
2
< γ2 ||w(k)||2

2
with γ ∈

[γs, γf ]. Moreover, it yields a first-order approxima-
tion to the state trajectories of the original system (5).

Proof: Follows by parallel development to [6, 7].⊓⊔

Remark 6 It is significant to note that the results of
Theorems 2 and 3 and Lemmas 4 and 5 are new in the
field of discrete systems with time scales. It further
strengthen the fact that system (5) is a good represen-
tative model of two-time-scale discrete-time systems
with implicit characterization of the mode-separation
property.

We next direct attention to the design ofH2 com-
posite control design.

5 H2 Control Design

Similarly, instead of designing a full-orderH2, we de-
compose it into two separate slow and fastH2 con-
trollers and later on we recompose them in the manner
of Lemma 1.

5.1 SlowH2 controller

LetVs = xts(k)Psxs(k), Ps > 0 be a Lyapunov func-
tion associated with the slow subsystem (6). The ob-
jective of slowH2 controller is to ensure the stability
of closed-loop slow subsystem and to keep theH2-
norm of the transfer functionHysw(s) fromw to ys as
small as possible.

Given the slow controlus(k) = Gsxs(k) into (6),
the closed-loop slow subsystem becomes

xs(k + 1) = Acoxs(k) + Γow(k)

ys(k) = Ccoxs(k) + Ψow(k)

Aco = Ao +BoGs,

Cco = Co +DoGs (16)

From the Lyapunov theorem givenGs, the closed-
loop system (16) is internally asymptotically stable
w(k) ≡ 0 if

P −At
coPAco > 0 (17)

Then the square of theH2-norm of the transfer
functionHzw(s) can be expressed in terms of the so-
lution of a Lyapunov equation (controllability Gram-
mian) such that the corresponding minimization prob-
lem with respect to the controller gainGs is given by

min Tr[CcoPsC
t
co]

subject to
{

Ps −At
coPsAco + ΓoΓ

t
o = 0

}

(18)

whereTr[.] denotes the trace operator. SincePs < P
for anyP satisfying

P −At
coPAco + ΓoΓ

t
o < 0 (19)

it is readily verified that ||Hzw(s)||
2
2

=
Tr[CcoPsC

t
co] < ν with Ψo ≡ 0 if and only if there

existsP > 0 satisfying (19) andTr[CcoPCt
co] < ν.

Introducing an auxiliary parameterZ, the fol-
lowing design result is obtained:

Theorem 7 : System (6) is stabilizable by the con-
troller us(k) = Gsxs(k) and ||Hzw(s)||

2
2
< ν for a
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prescribedν if and only if there exist matricesP >
0, Q, Z > 0 such that

Tr(Z) < ν,

[

Z CoP +DoQ
• P

]

> 0,





P AoP +BoQ Γo

• P 0
• • I



 > 0 (20)

Moreover, the slow gain is given byGs = QP−1

Proof: It follows from standard convex analysis simi-
lar to [17, 18]. ⊓⊔

5.2 FastH2 controller

Similarly, letVf = xtf (k)Pfxf (k), Pf > 0 be a Lya-
punov function associated with the fast subsystem (7).
The objective of fastH2 controller is to ensure the sta-
bility of closed-loop fast subsystem and to keep the
H2-norm of the transfer functionHyfw(s) from w to
yf as small as possible. The corresponding design re-
sult is provided by the following theorem in a parallel
development to Theorem 7:

Theorem 8 : System (7) is stabilizable by the con-
troller uf (k) = Gfxf (k) and ||Hyfw(s)||

2
2

< ν
for a prescribedν if and only if there exist matrices
R > 0, S, W > 0 suchthat

Tr(W) < ν,

[

W C2R
• R

]

> 0,





R A4P +BoS Γo

• R 0
• • I



 > 0 (21)

Moreover, the slow gain is given byGf = SR−1

By combining Lemma 1, Theorems 7 and 8,
the compositeH2 control is derived by the following
lemma:

Lemma 9 Consider system (5) and letP >
0, Q, Z > 0 andR > 0, S, W > 0 be thefea-
sible solutions of the LMIs (20) and (21), respectively.
Then theH2 composite control

uc(k) = [(I − SR−1(I −A4)
−1B2)

−1QP−1

− SR−1(I −A4)
−1A3]x1(k)

+ SR−1x2(k) (22)

guarantees that the stability of closed-loop system
while keeping theH2-norm of the transfer function
Hyw(s) fromw to ys as small as possible. Moreover,
it yields a first-order approximation to the state tra-
jectories of the original system (5).

Remark 10 In a similar way, the results ofTheo-
rems 7 and 8 andLemmas 9 and 5 are new in the
field of discrete systems with time scales. It assert
that the operations of permutation ans/or scaling are
essential in casting discrete-time systems of the type
(5) in the form of two-time-scale discrete-time systems
with implicit characterization of the mode-separation
property.

Remark 11 • The stabilizability-detectability
conditions of the triples (A0, B0, C0) and
(A4, B4, C4) are eventually independent. More
importantly, it has been established [5], [6]
that they are equivalent to the stabilizability-
detectability of the triple (A, B, C) of the original
system (l), whereBT = [BT

1
BT

2
].

• The control lawsus(k) anduf (k) given by (25)
and (29) are only subsystem optimal; that is, with
respect to the slow and fast subsystem variables.
However, it is much easier and computationally
simpler to determine them than the optimal con-
trol for the overall system (1).

6 Simulation Example I

Now, we apply the foregoing results to an engine and
dynamometer test rig for which a linearized model
was developed in [15, 16]. It has the dynamometer ro-
tor speed, shaft torque, engine speed and current am-
plifier states as the state variables. The input variables
are the throttle servo voltage and dynamometer source
current. It can easily checked that the model exhibits
a mode-separation with two slow states (n1 = 2)
and three fast states (n2 = 2). Given the data from
[15, 16], the slow model (6) is described by

Ao =

[

0.762 0
−0.029 0.689

]

,

Bo =

[

0 1.049
0.090 −0.018

]

Co =

[

0 1
−0.221 8.191

]

,

Do =

[

0 0
0.765 −0.144

]

whereas thefast model (7) is given by

A4 =





0.160 −0.002 −0.258
0 −0.038 0

0.231 0 −0.381



 ,

B2 =





0.702 −0.083
0 22.400

0.142 0.026



 , Ct
2 =





0
0
1




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Application ofTheorems2 and 3 gives theH∞ slow
and fast gains as

Gs =

[

0.008 −0.094
0.007 0.089

]

, γs = 0.453,

Gf =

[

−0.286 −0.001 −0.079
−0.277 −0.011 −0.084

]

, γf = 0.629

This yields theH∞ composite control as

Gc =

[

0.054 0.030 −0.288 0.012 −0.078
0.051 0.114 −0.269 0.078 −0.103

]

γc ∈ [0.453, 0.629]

On the other hand, application ofTheorems7 and 8
with ν = 1.245 yields theH2 slow and fast gains as

Gs =

[

0.016 −0.085
0.002 0.097

]

,

Gf =

[

−0.305 −0.013 −0.044
−0.225 −0.001 −0.103

]

From which,theH2 composite control takes the form

Gc =

[

0.047 0.028 −0.309 0.104 −0.036
0.062 0.209 −0.283 0.055 −0.201

]

According toLemmas4 and 9, the ensuing compos-
ite gains guarantee close approximation to the closed-
loop state-trajectories.

7 Kalman Filter Design

Based on the foregoing results, this section investi-
gates a reduced discrete Kalman filter design to esti-
mate the slow and fast states.

7.1 Slow filter design

We consider the slow model (6). Subject to the
detectability of(A0, C0), the observer form of the
Kalman filter for the slow subsystem (6) is given as:

x̂s(k + 1) = A0x̂s(k) +B0us(k)

+ Ks[ys(k)− ŷs(k)]

= (A0 −KsC0)x̂s(k) +KsC0xs(k)

+ B0us(k)

+ [KsΨ0w(k) +Ks]w(k) (23)

It follows from (6) and (23), that the slow estimation
error has the form:

es(k + 1) = xs(k + 1)− x̂s(k + 1)

= [A0 −KsC0]es(k)

+ [Γ0 −KsΨ0 −Ks]w(k)

The associated estimation error covariance is:

Σs(k + 1) = E[es(k + 1)eTs (k + 1)]

= [A0 −KsC0]Σs(k)[A0 −KsC0]
T

+ [Γ0 −KsΨ0]W [Γ0 −KsΨ0 −Ks]
T

+ Ks]WKT
s (24)

Evaluating the prediction update, we deduce that

es(k + 1) = [I −KsC0]es(k)

− [KsΨ0 +Ks]w(k) (25)

Hence, the estimation error covariance is updated as:

Σs(k + 1) = [I −KsC0]Σs(k)[I −KsC0]
T

− [KsΨ0 +Ks]W [KsΨ0 +Ks]
T

Following standard procedure, we can get the slow
Kalman gain by differentiating the trace of the esti-
mation error covariance matrix and setting it equals to
zero. This procedure yields

W̄ = E0WET
0

Ks = Σs(k)C
T
0 [C0Σs(k)C

T
0 + W̄ ]−1 (26)

7.2 Fast filter design

In a similar fashion, the observer form of the Kalman
filter for the fast subsystem is given by:

x̂f (k + 1) = A4x̂f (k) +B2uf (k)

+ Kf [yf (k)− ŷf (k)]

= (A4 −KfC2)x̂f (k) +KfC2xf (k)

+ B2uf (k) +Kfw(k) (27)

Likewise, the estimation error is

ef (k + 1) = xf (k + 1)− x̂f (k + 1)

= [A4 −KfC2]ef (k) +G2w(k)

− Kfw(k)

The estimation error covariance is expressed as

Σf (k + 1) = E[ef (k + 1)eTf (k + 1)]

= [A4 −KfC2]Σf (k)[A4 −KfC2]
T

+ Ψ2WΨT
2 −KfWKT

f (28)

and the updated estimation error is represented by

ef (k + 1) = [I −KfC2]ef (k)−Kfv(k)(29)

Hence, the estimation error covariance updating be-
comes

Σf (k + 1) = E[ef (k + 1)eTf (k + 1)]

= [I −KfC2]Σf (k)[I −KfC2]
T

− KfV KT
f
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In a similar way, we can get the Kalman gain by differ-
entiating the trace of the estimation error covariance
matrix and setting it equal to zero:

Kf = Σf (k)C
T
2 [C2Σf (k)C

T
2 + V ]−1 (30)

7.3 Full order Kalman filter

Had we considered the full system (5), we would have
derived the Kalman filter equation in the form:

x̂(k + 1) = Ax̂(k) +Bu(k) +K[y(k)− ŷ(k)]

= (A−KC)x̂(k) +KCx(k)

+ Bu(k) +Kw(k) (31)

The estimation error is

e(k) = x(k + 1)− x̂(k + 1)

= Ae(k) +Gw(k)

thenthe estimation error covariance defines as

Σ(k) = E[e(k)eT (k)]

= AΣ(k)AT +GWGT (32)

Theupdated estimation error is represented as

e(k) = [I −KC]e(k)−Kv(k)

and the updating the estimation error covariance is

Σ(k) = E[e(k)eT (k)]

= [I −KC]Σ(k)[I −KC]T −KWKT

The Kalman filter gain is

K = ΣCT [CΣCT +W ]−1 =

[

K1

K2

]

(33)

whereK1 andK2 are thesubsystem Kalman gain ma-
trices. Considering the full-order Kalman filter for
(31) along with the full-order system (5), we obtain
the corresponding filtered states as:

[

x̂1(k + 1)
x̂2(k + 1)

]

=

[

A1 −K1C1 A2 −K1C2

A3 −K2C1 A4 −K2C2

]

×

[

x̂1(k)
x̂2(k)

]

+

[

K1C1 K1C2

K2C1 K2C2

] [

x1(k)
x2(k)

]

+

[

B1

B2

]

u(k) +

[

K1

K2

]

w(k)

ŷ(k) = C1x̂1(k) + C2x̂2(k) (34)

7.4 Degree of approximation

To assess the value of the developed results, it is de-
sired to find the degree of approximation between the
state-estimate generated by the approximated slow-
fast subsystems:
[

x̂s(k + 1)
x̂f (k + 1)

]

=

[

A0 −KsC0 0
0 A4 −KfC2

]

[

x̂s(k)
x̂f (k)

]

+

[

KsC0 0
0 KfC2

] [

xs(k)
xf (k)

]

+

[

B0

B2

]

u(k)

+

[

KsE0 +Ks

Kf

]

w(k) (35)

and those derived by the original subsystems (34).
The end result is summarized by the following the-
orem:

Theorem 12 The developed slow and fast estimators
are first-order approximation to the original subsys-
tem estimators in the sense that

Ks ≈ K1 +∆1

Kf ≈ K2 +∆4 (36)

where∆1 and ∆4 are ©(σ) whereσ signifiesthe
eigenvalue separation.2 This enures that

x̂s(k) ≈ x̂1(k), x̂f (k) ≈ x̂2(k)

Proof: Applying the similarity transformation

T =

[

I1 +ML M
L I2

]

;

T−1 =

[

I1 −M
−L I2 + LM

]

to system (34) where matricesL andM are real roots
of

[A4 −K2C2]L− L[A1 −K1C1] +

L[A2 −K1C2]L− [A3 −K2C1] = 0,

M [(A4 −K2C2) + L(A2 −K1C2)]−

[(A1 −K1C1)− (A2 −K1C2)L]M

+(A2 −K1C2) = 0 (37)

For the free system (5), a first-order approximation to
theL andM matrices are given by

Lo = −(I −A4)
−1A3,

Mo = [A1 +A2(I −A4)
−1A3]

−1A2

2A vector or matrixπ(σ) of a positive scalarσ is said to
be ©(σ) if there exists positive constantsd and σ∗ such that
||π(σ)|| ≤ dσ∗ for all σ ≤ σ∗.
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Algebraic manipulation using results of [6], it follows
that the gain expressions (36) hold where

∆1 = MLA1 −MLK1C1 +MA3 −MK2C1

− MLA2L+MLK1C2L−MA4L

+ MK2C2L,

∆2 = A2 −K1C2 +MLA2 −MLK1C2 +MA4

− MK2C2 −A1M +K1C1M −MLA1M

+ MLK1C1M −MA3M +MK2C1M

+ A2LM −K1C2LM +MLA2LM

− MLK1C2LM +MA4LM −MK2C2LM,

∆3 = −LA2L+ LK1C2L−A4L+K2C2L.

∆4 = LA2LM − LK1C2LM +A4LM

− LK1C2 − LA1M + LK1C1M −A3M

+ K2C1M + LA2 −K2C2LM

These values guarantee that∆1 and∆4 are of order
’©(σ)’. ⊓⊔

Remark 13 One of the salient features of the forgo-
ing design is that the computational load of comput-
ing a Kalman filter of ordern = n1 + n2 is now
replaced to a first-order approximation by computing
two Kalman filters of ordern1 andn2.

8 Simulation Example II

A fourth-order discrete two-time-scale system will be
shown to demonstrate the main objective of this paper
[23]. The system is arranged as follows:

A =









0.9 0 0 0.1
0.1 0.8 0.05 −0.1
−0.1 0 0.15 0
0.12 0.03 0 0.1









,

B =









1 0
0 1
1 0.5
0.5 0









, Γ =









0.1 0
0.9 0.6
0 0.1
0.3 0.1









C =

[

0.1 0 0 0.1
0 0.1 0.2 1

]

,

the Kalman filter gains are resulting as

Ks =

[

11.1691 −10.9447
5.4686 −5.1510

]

Kf =

[

−17.8942 18.8445
−12.2918 13.2971

]

The presented approach will be used to design a
Kalman filter based on the Kalman filters of the
reduced-order systems. The Kalman filter design of
the reduced-order system resulted in the following
gain:

Kc =









11.1691 −10.9447
5.4686 −5.1510

−17.8942 18.8445
−12.2918 13.2971









And the state-feedback regulator design of the
reduced-order system resulted in the following gain:

Gc =

[

−0.3521 −0.0604 −0.0353 −0.0557
0.2786 −0.2519 −0.0939 0.0748

]

While the Kalman filter design of the exact system
resulted in the following gain:

K =









5.3173 −4.3839
2.1899 −1.3527
−2.2945 2.4683
2.2836 −2.0322









The state-feedback regulator design of the exact sys-
tem resulted in the following gain:

G =

[

−0.6259 −0.0279 −0.0078 −0.1193
0.6581 −0.3648 −0.1627 0.1649

]

Two different test-input signals were used to check
the response of the exact system based on the exact de-
sign of the LQG controller and based on the reduced-
order one. Results were very good, a matter that re-
flects the potential this approach has. Fig. (1) shows
the response of the system due to sine wave input sub-
jected to process and measurement noises. It can be
seen that the Kalman filter is doing a great job in iso-
lating the noisy measurements from the controller as
can be seen from Fig. (1). To give a clearer image

Figure 1: System response due to noisy sine input.

about the performance of the LQG controller based
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on the reduced-order approach presented here, it was
compared to the response of the Exact LQG controller
as shown in Fig. (2). when subjected to no noise. It
is obvious that the performances of both schemes are
very close. Fig. (3). shows the control signals for

Figure 2: System response due to sine input without
noise.

control design schemes which are very close too. It
is worth mentioning that the control signal is affected
by the noise, but in this example, a successful choice
of the weighing matrices was a key issue in obtaining
the results presented here. The states have something

Figure 3: Control signal of both subsystems without
noise.

to tell as well, Fig. (4). shows the states’responses
to the input and it is also clear that the states are
close. Another thing that may help in confirming the

Figure 4: States response due to a sine input.

results claimed here is to consider the error in esti-
mation based on both the exact and the reduced-order
Kalman filters. Fig. 5. shows the estimation error of
the system outputs as found by the two filters. The

error is small and the estimation is also close. Follow-

Figure 5: Estimation error between the two filters.

ing, additional simulation results of the same system
due to a step input can be seen as a confirmation for
the validity of the approach stated here.

Figure 6: Simulation results of the same system due
to a step input with noise.

Figure 7: Simulation results of the same system due
to a step input without noise.

9 Conclusion

This paper has been concerned with the feedback con-
trol design problem for a wide class of discrete-time
systems possessing fast and slow modes. The slow
and fast subsystems are considered to be completely
controllable and observable, which is a less restric-
tive condition than the complete controllability and
observability of the original system. Adopting either
theH∞ or H∞ optimization criteria, a two-stage de-
sign procedure has been developed using separate gain
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Figure 8: system states of the same system due to a
step input.

Figure 9: Estimation error of the same system due to
a step input.

matrices for the fast and slow subsystems. A com-
posite control has been constructed to yield first-order
approximations to the behavior of the discrete system.
By parallel development, we developed Kalman fil-
ters for the slow and fast subsystems and assessed
the degree of approximation. The ensuing results
have reflected the potential of this approach.Ac-
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